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The Scenario Approach to Robust Control Design
Giuseppe C. Calafiore and Marco C. Campi

Abstract—This paper proposes a new probabilistic solution
framework for robust control analysis and synthesis problems
that can be expressed in the form of minimization of a linear
objective subject to convex constraints parameterized by uncer-
tainty terms. This includes the wide class of NP-hard control
problems representable by means of parameter-dependent linear
matrix inequalities (LMIs). It is shown in this paper that by
appropriate sampling of the constraints one obtains a standard
convex optimization problem (the scenario problem) whose solu-
tion is approximately feasible for the original (usually infinite) set
of constraints, i.e., the measure of the set of original constraints
that are violated by the scenario solution rapidly decreases to zero
as the number of samples is increased. We provide an explicit
and efficient bound on the number of samples required to attain
a-priori specified levels of probabilistic guarantee of robustness.
A rich family of control problems which are in general hard to
solve in a deterministically robust sense is therefore amenable to
polynomial-time solution, if robustness is intended in the proposed
risk-adjusted sense.

Index Terms—Probabilistic robustness, randomized algorithms,
robust control, robust convex optimization, uncertainty.

I. INTRODUCTION

CONVEX optimization, and semidefinite programming in
particular, has become one of the mainstream frameworks

for control analysis and synthesis. It is indeed well-known that
standard linear control problems such as Lyapunov stability
analysis and or synthesis may be formulated (and
efficiently solved) in terms of solution of convex optimization
problems with linear matrix inequality (LMI) constraints; see,
for instance, [11], [25], and [42]. More recently, research in
this field has concentrated on considering problems in which
the data (for instance, the matrices describing a given plant)
are uncertain. A “guaranteed” (or robust) approach in this case
requires the satisfaction of the analysis or synthesis constraints
for all admissible values (worst-case approach) of the uncertain
parameters that appear in the problem data, see for instance
[1]. Therefore, in the “robustified” version of the problem one
has to determine a solution that satisfies a typically infinite
number of convex constraints, generated by all the instances of
the original constraints, as the uncertain parameters vary over
their admissible domains.
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This “robust” convex programming paradigm has emerged
around 1998 (see [7] and [28]) and, besides the systems and
control areas, has found applications in, to mention but a few,
truss topology design [6], robust antenna array design, port-
folio optimization [29], and robust estimation [27]. Unfortu-
nately, however, robust convex programs are not as easily solv-
able as standard ones, and are NP-hard in general, [7]. This im-
plies for instance that—unlike standard semidefinite programs
(SDP)—simply restating a control problem in the form of a ro-
bust SDP does not mean that the problem is amenable to efficient
numerical solution.

The current state of the art for attacking robust convex op-
timization problems is by introducing suitable relaxations via
“multipliers” or “scaling” variables, [9], [28], [41]. The main
drawbacks of the relaxation approach are that the extent of the
introduced conservatism is in general unknown (although it can
be assessed for particular classes of problems, see [9], or asymp-
totically reduced by increasing the order of relaxation, [41]), and
that the method itself can be applied only when the dependence
of the data on the uncertainties has a particular and simple func-
tional form, such as affine, polynomial or rational.

In this paper, we pursue a different probabilistic approach to
robustness in control problems, in which the guarantees of per-
formance are not intended in a deterministic sense (satisfaction
against all possible uncertainty outcomes) but are instead in-
tended in a probabilistic sense (satisfaction for most of the un-
certainty instances, or in probability).

Introducing probability in robustness gained increasing in-
terest in the literature in recent years, and the probabilistic ap-
proach is now a rather established methodology for robustness
analysis; see, for instance, [3], [20], [33], [39], [43], and [44].
However, the probabilistic approach has found to date limited
application in robust control synthesis. Basically, two different
methodologies are currently available for probabilistic robust
control synthesis: the approach based on the Vapnik–Chervo-
nenkis theory of learning [34], [49], [50], and the sequential
methods based on stochastic gradient iterations [19], [24], [37]
or ellipsoid iterations, [31].

The first approach is very general but suffers from the con-
servatism of the Vapnik–Chervonenkis theory, [47], [48], which
requires a very large number of randomly generated samples
(i.e., it has high “sample complexity”) in order to achieve the
desired probabilistic guarantees. Even more importantly, the de-
sign methodology proposed in the seminal paper [49] does not
aim to enforce the synthesis constraints in a robust sense, but is
instead directed toward minimizing the average cost objective.

Alternatively, when the original synthesis problem is convex
(which includes many, albeit not all, relevant control problems)
the sequential approaches based on stochastic gradients [19],
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[24], [37] or ellipsoid iterations [31], may be applied with suc-
cess. However, these methods are currently limited to feasibility
problems, and have not yet been extended to deal satisfactorily
with optimization. More fundamentally, these algorithms have
asymptotic nature, i.e., they are guaranteed to converge to a ro-
bust feasible solution (if one exists) with probability one, but
the total number of uncertainty samples that need to be drawn
in order to achieve the desired solution cannot be fixed in ad-
vance.

The main contribution of the present work is to propose a
general framework named “scenario approach” to solve convex
robust control design problems. The fundamental idea is to con-
sider only a finite number of sampled instances of the uncer-
tainty affecting the system (the scenarios), and to solve in one-
shot the corresponding standard convex problem. We will prove
in this paper that the number of scenarios that need be consid-
ered is reasonably small and that the solution of the scenario
problem has generalization properties, i.e., it satisfies with high
probability also unseen scenarios. This is fundamentally dif-
ferent from the average reformulation proposed in [49].

In the key result of this paper (Theorem 1), we provide an ef-
ficient bound on the sample complexity of the scenario problem,
that increases slowly with the required probabilistic levels. This
is different from the stochastic sequential methods of [19], [24],
[31], [37] that have an asymptotic nature. Moreover, a notable
improvement upon the stochastic sequential methods is that our
result holds for robust optimization problems and not only for
feasibility.

This paper is organized as follows. In Section II, we introduce
more precisely the notion of probabilistic design. Section III
contains the main results on scenario optimization, while a proof
of Theorem 1 is given in Section IV. Section V discusses some
robust control problems that are amenable to the scenario-based
solution, and presents a numerical example. Conclusions are fi-
nally drawn in Section VI.

II. WORST-CASE VERSUS PROBABILISTIC DESIGN

A wide class of robust control problems can be expressed as
optimization problems subject to constraints that are parame-
terized by the uncertainties affecting the plant. In formal terms,
if is the “design parameter” (which includes
the actual controller parameters, plus possibly other additional
variables such as parameters of Lyapunov functions, slack vari-
ables and scalings), and the family of admissible plants is pa-
rameterized by an “uncertainty vector” , then the
prototype control problem we refer to consists in minimizing
a linear objective (the objective to be minimized can be
taken as linear, without loss of generality), subject to that sat-
isfies the constraints , , where

is a scalar-valued function that speci-
fies the constraints. Note that considering scalar-valued con-
straint functions is without loss of generality, since multiple
constraints can be reduced
to a single scalar-valued constraint by the position

. In typical situations, has infinite cardi-
nality, i.e., it contains an infinite number of possible instances
for .

In this paper, we make reference to problems where the
function is convex in , as formally stated in the next assump-
tion.

Assumption 1 (Convexity): Let be a convex and
closed set, and let . We assume that

is continuous and convex in , for any fixed value of
.

Assumption 1 requires convexity only with respect to the de-
sign variable , while generic nonlinear dependence with re-
spect to is allowed.

Important special cases of robust convex programs are ro-
bust linear programs, [8], for which is affine in , and
robust semidefinite programs, [9], [28], for which

, where

and denotes the largest eigenvalue.
The reader is referred to Section V for a sample of robust

control problems that fall within the convex framework here de-
scribed.

a) Worst-Case Design: In worst-case design, one aims at
enforcing the design constraint for all possible
values of the uncertainty . The resulting closed-loop
system will hence exhibit a performance level that is guaran-
teed for each and every plant in the uncertain family. How-
ever, a fundamental problem is encountered along this approach:
Obtaining worst-case solutions has been proven to be compu-
tationally hard; explicit results on the NP-hardness of several
worst-case design problems are for instance found in [10], [13],
and [36]. In addition, a second criticism applies to a worst-case
design: Seeking guarantees against the worst-case can intro-
duce undesirable conservatism in the design, since all the de-
sign focus is on a special “ill” situation (the worst-case plant),
which could as well be unrepresentative of the majority of ad-
missible plants. These critical points that we recalled here are
extensively documented in [49], to which we refer the reader.
For these reasons, we adopt in this paper an alternative design
approach, based on satisfaction of the design constraints in prob-
ability.

b) Probabilistic Robust Design: In the probabilistic de-
sign paradigm, we assume a probability measure over
the uncertainty set is given. Then, for a given probability
level , we seek a design parameter that minimizes

while satisfying all constraints but a small fraction of them
whose probability is no larger than the prespecified level . It
should be noted that this approach can be seen as a relaxation
of the worst-case paradigm where one allows a risk level and
looks for a design parameter such that the performance speci-
fication is violated by at most a fraction of the plants in the
uncertainty family.

III. SCENARIO OPTIMIZATION

The main result of this section (Theorem 1) shows that a so-
lution to the probabilistic design problem can be found at low
computational effort, with complete generality.
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We start by formally introducing some relevant definitions.
We assume that the support for is endowed with a -al-
gebra and that is defined over . Moreover, we assume
that , . Depending on the
situation at hand, can have different interpretations. Some-
times, it is the actual probability with which the uncertainty pa-
rameter takes on value in . Other times, simply de-
scribes the relative importance we attribute to different uncer-
tainty instances. We have the following definition.

Definition 1 (Probability of Violation): Let be given.
The probability of violation of is defined as

For example, if a uniform (with respect to Lebesgue measure)
probability density is assumed, then measures the volume
of “bad” parameters such that the constraint is
violated. Clearly, a solution with small associated is fea-
sible for most of the problem instances, i.e., it is approximately
feasible for the robust problem. This concept of approximate
feasibility has been introduced in the context of robust control
in [4]. Any solution such that is here named an
“ -level” solution.

Definition 2 ( -Level Solution): Let . We say that
is an -level robustly feasible (or, more simply, an -level)

solution, if .
Our goal is to devise an algorithm that returns a -level so-

lution, where is any fixed small level, and that is worst-case
optimal over the set of satisfied constraints. To this purpose,
we now introduce the “scenario” version of the robust design
problem. By scenario it is here meant any realization or instance
of the uncertainty parameter . In the scenario design we opti-
mize the objective subject to a finite number of randomly se-
lected scenarios. Later on in Theorem 1 we show that the sce-
nario design permits to solve the -level probabilistic design.

Definition 3 (Scenario Design): Assume that independent
identically distributed samples are drawn ac-
cording to probability . A scenario design problem is given
by the convex program

(1)

The acronym refers to the fact that (1) is a robust
convex program with constraints.

To avoid mathematical clutter, we here make the following
technical assumption on the scenario problem. However, this
assumption can be released, as shown in Appendix A.

Assumption 2: For all possible extractions ,
the optimization problem (1) is either unfeasible, or, if feasible,
it attains a unique optimal solution.

Contrary to the robust convex problem, the scenario problem
is a standard convex optimization problem with a fi-

nite number of constraints and, hence, its optimal solution
is usually efficiently computable by means of numerical al-

gorithms. Moreover, since only constraints are imposed in

, it is clear that the optimal solution of is super-
optimal for the robust convex problem with all constraints in
place, i.e., the objective corresponding to outperforms the
one achieved with the solution of the robust convex program. In
this way, the scenario approach alleviates the conservatism of
the worst-case approach.

The fundamental question that need now be addressed is:
what guarantee can be provided on the level of feasibility of the
solution of ? The following key Theorem 1 and its
Corollary 1 answer this question.

Before stating the theorem, we note that, since the constraints
are randomly selected, the resulting optimal so-

lution is a random variable that depends on the multi-sample
extraction . Therefore, can be a -level so-
lution for a given random extraction and not for another. In the
theorem, the parameter bounds the probability that is not
a -level solution. Thus, is the risk of failure, or confidence,
associated to the randomized solution algorithm.

Theorem 1: Let Assumption 2 be satisfied. Fix two real num-
bers (level parameter) and (confidence pa-
rameter). If

(2)

( denotes the smallest integer greater than or equal to the ar-
gument) then, with probability no smaller than , either the
scenario problem is unfeasible and, hence, also the ini-
tial robust convex program is unfeasible; or, is feasible,
and then its optimal solution is -level robustly feasible.

In this theorem, probability refers to the -fold prob-
ability ( , times) in

, which is the set to which the extracted multi-
sample belongs. Here and elsewhere, the mea-
surability of , as well as that of other sets in ,
is taken as an assumption. A proof of Theorem 1 is given in
Section IV. A visual interpretation of this theorem is provided
in Fig. 1.

Theorem 1 states that if (specified by (2)) random scenarios
are drawn, the optimal solution of is -level feasible ac-
cording to Definition 2, with high probability . Parameter

is important in theory since, if is pushed down to zero,
goes to infinity. However, for a practical use, we can observe
that plays a very marginal role. The reason is that shows
up in (2) under the sign of logarithm so that it can be made very
small ( or even ) without significantly increasing .
The scenario approach thus provides us with a viable and imple-
mentable way to robustify a nominal design up to a desired level
.

Bound (2) can be simplified as stated in the next corollary.
Corollary 1: The results in Theorem 1 hold for

(3)
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Fig. 1. Interpretation of Theorem 1: with probability at least 1�� we extract
a multisample � ; . . . ; � from outside the “bad set.” The resulting optimal
solution �̂ is, hence, feasible for all but at most a set of measure � of the
uncertainties.

The subscript “ ” in (3) highlights the logarithmic depen-
dence on .

Proof: Observe that and, hence, the last
term in (2) is nonpositive and can be dropped, leading to

(4)

where can be freely selected in (0, 1). The statement of the
corollary is then obtained by selecting in (4). We also
note that further optimizing (4) with respect to always leads
to a , with a corresponding improvement by at most of
a factor 2.

Some remarks further comment the results in Theorem 1 and
Corollary 1.

Remark 1 (The Role of Convexity): Theorem 1 says that if
we extract a finite number of constraints, then the solution
of the randomized problem—if feasible—satisfies most of the
other unseen constraints. This is a generalization property in
the learning theoretic sense: The explicit satisfaction of some
“training” scenarios generalizes automatically to the satisfac-
tion of other unseen scenarios. It is interesting to note that gen-
eralization calls for some kind of structure, and the only struc-
ture used here is convexity. So, convexity in the scenario ap-
proach is fundamental in two different respects: On the com-
putational side, it allows for an efficient solution of the en-
suing optimization problem; on the theoretical side, it allows
for generalization.

Remark 2 (Sample Complexity): Formula (3) provides a
ready-to-use “sample complexity” for the number of random
scenarios that need to be drawn in order to achieve the desired
probabilistic level in the solution. In fact in (3) only
depends on the number of optimization variables, besides
the probabilistic levels and , and its evaluation does not in-
volve computing complicated complexity measures such as the

VC-dimension. It is not difficult to conceive situations where
the class of sets , parameterized
in , has infinite VC-dimension (see, e.g., [47] for a defini-
tion of VC-dimension), even for small . Then, estimating

uniformly with respect to
is impossible and the VC-theory is of no use. Theorem 1 says

that, if attention is restricted to , then estimating is
indeed possible and this can be done at a low computational
cost.

Remark 3 (Prob-Independent Bound): In some applications,
probability is not explicitly known, and the scenarios are
directly made available as “observations.” This could for ex-
ample be the case when the instances of are actually related
to various measurements or identification experiments made on
a plant at different times and/or different operating conditions;
see, e.g., [15] and [16]. In this connection, we notice that the
bound (2) is probability independent, i.e., it holds irrespective
of the underlying probability , and can therefore be applied
even when is unknown.

Remark 4 (Comparison With an Older Bound): In a previous
work [17] devoted to general convex optimization, the authors
of the present paper derived a different bound on the sample
complexity of sampled convex programs. This earlier result es-
tablishes that the statement of Theorem 1 holds for

(5)

This bound is linear both in and and, since one typ-
ically desires to have very small, bound (5) is worse by or-
ders of magnitude with respect to the newly derived bounds.
The number of samples required by (2) appears to be reason-
able and useful for a practical implementation of our method.
For instance, in a problem with variables, setting prob-
ability levels and , bound (2) would require

samples.

A. The Chance-Constrained Problem

Consider the probability-constrained problem

subject to

(6)

The distinctive feature of is that it is required that the
neglected constraint set is chosen in an optimal way, i.e., among
all sets of constraints with probability no larger than , the re-
moved one is the one that allows for the greatest reduction in
the design objective. In the optimization literature, this problem
is called a “chance-constrained” optimization problem, see e.g.,
[38], [46]. It should readily be remarked that an exact numerical
solution of is in general hopeless, see [38], [46]. More-
over, is in general nonconvex, even when the function

is convex in for all . There are however very
specialized instances of chance-constrained problems (in partic-
ular, linear programs with log-concave distributions of the un-
certain parameters) that can indeed be reformulated as standard
convex programs and, hence, solved efficiently, see again [38],
and [35] for an application to control design.
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As we have already seen, returns with high proba-
bility a feasible solution of . In the next theorem, we
establish a precise connection between and .

Theorem 2: Let be given probability levels.
Let denote the optimal objective value of the chance-
constrained problem in (6) when it is feasible (i.e.,

subject to ) and let be
the optimal objective value of the scenario problem in
(1) when it is feasible (notice that is a random variable,
while is a deterministic value), with any number sat-
isfying (2). Then

1) with probability at least , if is feasible it
holds that

2) assume is feasible, where
. With probability at least , it holds that

A proof of this theorem is given in Appendix B.
A few words help clarify result 2 in Theorem 2. First notice

that is a nonincreasing function of . Result 2 states that
the optimal value (where has been selected so that
the optimal solution is -level feasible with probability )
is, with probability at least , no worse than , for a
certain explicitly given. For a ready comparison between

and , observe that relation holds for any
and (as it easily follows by observing that the

two sides coincide for and and that is convex in
). Then, with the position ; , we have

which, used in result 2 of the theorem, gives
, with any number satisfying (2). For a crude

evaluation, use bound (3) for . If and is not taken to
be very small as compared to , then the dominant term in (3)
is , leading to ,
where is the rescaling factor between and .

IV. PRELIMINARIES AND PROOF OF THEOREM 1

A. Preliminaries

We first recall a classical result due to Helly; see [40].
Lemma 1 (Helly): Let be a finite collection of

convex sets in . If every sub-collection consisting of
sets has a nonempty intersection, then the entire collection has
a nonempty intersection.

Next, we prove a key instrumental result. Consider the convex
optimization program

subject to

where , , are closed convex sets, and define
the convex programs , , obtained from by
removing the th constraint

subject to

Assume program and the programs admit a unique op-
timal solution, say and , respectively, and let
and . We have the following definition.

Definition 4 (Support Constraint): The th constraint is
a support constraint for if .

The following theorem holds.
Theorem 3: The number of support constraints for problem
is at most .
A proof of this result was first given by the authors of the

present paper in [17]. We here report an alternative and more
compact proof based on an idea suggested to us by A. Ne-
mirovski in a personal communication.

Proof: Let problem have support constraints
, where is a subset of in-

dexes from . We next prove (by contradiction) that
.

Consider the smallest objective improvement obtained by re-
moving a support constraint and, for
some with , define the hyperplane

. By construction, the points , , lie
in the half-space , while lies in the
half-space , and therefore separates ,

, from . Next, for all indices , we denote with
the point of intersection between the line segment and .

Since , , and
, then by convexity we have that

, and, therefore, (since, by con-
struction, )

For , define the convex sets , and
consider any collection of of these sets.

Suppose now (for the purpose of contradiction) that .
Then, there must exist an index such
that is a support constraint and, by the previous rea-
soning, this means that there exists a point such that

. Thus, ,

that is the collection of convex sets has at least
a point in common. Now, since the sets , ,
belong to the hyperplane (i.e., to , modulo a fixed
translation) and all collections composed of of these sets
have a point in common, by Helly’s Lemma (Lemma 1) there
exists a point such that . Such a would,
therefore, be feasible for problem ; moreover, it would yield
an objective value (since ). This
is a contradiction, because would no longer be an optimal
solution for , and, hence, we conclude that .

We are now ready to present a proof of Theorem 1.
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B. Proof of Theorem 1

The fact that, if is unfeasible, then the initial robust
convex program is unfeasible too is trivially true, since the latter
program exhibits more constraints than . Thus, we have
to prove that, with probability , either is unfeasible
or, if feasible, its solution is -level robustly feasible. This part
of the proof is inspired by a similar proof given in a different
context in [23].

For clarity of exposition, we first assume that problem
is feasible for any selection of . The case where
infeasibility can occur is obtained as an easy extension as indi-
cated at the end of the proof.

Given scenarios , select a subset
of indices from and let

be the optimal solution of the program

subject to

Based on we next introduce a subset of the set de-
fined as

(7)

( is the optimal solution with all constraints
in place).

Let now range over the collection of all possible choices

of indexes from ( contains sets). We

want to prove that

(8)

To show (8), take any . From the set of
constraint eliminate a constraint which is not a
support constraint (this is possible in view of Theorem 3, since

). The resulting optimization problem with
constraints admits the same optimal solution as the orig-
inal problem with constraints. Consider now the set of the
remaining constraints and, among these, remove a con-
straint which is not a support constraint for the problem with

constraints. Again, the optimal solution does not change.
If we keep going this way until we are left with constraints,
in the end we still have as optimal solution, showing that

, where is the set containing the
constraints remaining at the end of the process. Since this is
true for any choice of , (8) is proven.
Next, let and

. We now have

apply (8)

because of (7) (9)

A bound for is now obtained by bounding
and then summing over .

Fix any , e.g., to be more explicit. The set
is in fact a cylinder with base in the cartesian

product of the first constraint domains (this follows from the
fact that condition only involves the first
constraints). Fix base of the cylinder. For
a point to be in

, constraints must be satisfied by

, for, otherwise, we would not have ,
as it is required in . However, in

. Thus, by the fact that the extractions are indepen-
dent, we conclude that the equation shown at the bottom of the
page holds. The probability on the left-hand side is nothing but
the conditional probability that

given . Integrating
over the base of the cylinder , we then obtain

base of

(10)

From (9), we finally arrive to the desired bound for

(11)
The last part of the proof is nothing but algebraic manipulations
on bound (11) to show that, if is chosen according to (2), then

(12)

so concluding the proof. These manipulations are reported next.
Any of the following inequality implies the next in a top-down
fashion, where the first one is (2):

(13)

where the last implication can be justified by observing that
, for , and applying this inequality with
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. Proceeding from (13), the next inequalities in the
chain are

where, in the last implication, we have used the fact that
, as it follows by taking logarithm of

the two sides and further noting that . The last
inequality can be rewritten as

which is (12).
So far, we have assumed that is feasible for any

selection of . Relax now this assumption and
call the set where is indeed feasible. The
same derivation can then be worked out in the domain ,
instead of , leading to the conclusion that (11) holds with

. This concludes the
proof.

V. APPLICATIONS TO ROBUST CONTROL

In this section, we discuss a few relevant control analysis
and synthesis problems that can be naturally cast in the robust
convex program format, and for which no deterministic polyno-
mial-time algorithm is known that computes an exact solution.
For these problems, the solution approach that we propose is to
first relax the problem in a probabilistic sense and then solve
the probabilistic problem via the randomized scenario approach
presented in the previous sections.

A. Analysis and Synthesis via Parameter-Dependent Lyapunov
Functions

Consider the family of linear systems described in
state–space form as

(14)

where is the state variable, and the parameter
parameterizing the system family is unknown, but constant

in time. In the sequel, we will refer to system families of the
type (14) simply as “uncertain systems.”

Let be a family of symmetric matrices depending on
a design parameter and on the uncertainty parameter

, and assume that is linear in , for all .
The dependence of on the uncertainty , as well as the
dependence of on , are instead left generic. We introduce
the following sufficient condition for robust stability, which fol-
lows directly from the standard Lyapunov theory.

Definition 5 (Generalized Quadratic Stability –
GQS): Given a symmetric matrix function , linear in

for all , the uncertain system (14) is said to
be quadratically stable with respect to if there exists

such that

(15)
( means negative definite). Such a is called a Lyapunov
matrix for the uncertain system (14).

For specific choices of the parameterization , the
above GQS criterion clearly encompasses the popular quadratic
stability (QS, [11], [12]) and affine quadratic stability (AQS,
[26]) criteria, as well as the biquadratic stability condition of
[45]. For instance, the quadratic stability condition is recovered
by choosing (i.e., contains the free elements of

, and there is no dependence on ), which amounts
to determining a single Lyapunov matrix that simultane-
ously satisfies (15). The AQS condition is instead obtained by
choosing

(16)

where represents the free elements in the matrices ,
. Notice that QS, AQS and GQS constitute a hi-

erarchy of sufficient conditions for robust stability having de-
creasing conservatism. However, even the simplest (and most
conservative) QS condition is hard to check numerically. Only
in the case when the set is a polytope, the QS
condition is exactly checkable numerically via convex optimiza-
tion, [11], [12]. As a matter of fact, in this case a classical vertex
result holds which permits to convert the infinite number of con-
straints entailed by (15) into a finite number of LMIs involving
the vertices of the polytope. Notice however that in the classical
case when is an interval matrix, the number of vertices
of the polytope grows as , which means that QS cannot be
checked with a computational effort that is polynomial in the
problem size .

Now, notice that a key feature of the condition (15) is that,
for any fixed it represents a convex LMI condition in
, and therefore finding a feasible parameter amounts indeed

to solving a robust convex program. This is the key observation
that makes the scenario paradigm well-suited for probabilistic
analysis within the context of generalized quadratic stability.
With pre-specified confidence, a matrix generated by a
scenario solution would be a Lyapunov matrix for all but a small
fraction of the systems in the family (14).

1) Formalization as : Notice that condition (15) is
a feasibility condition expressed by a strict matrix inequality,
while the robust convex problem considered in previous sec-
tions is a minimization problem subject to a nonstrict inequality
condition (we have as opposed to ). The
precise formalization of the GQS problem within the scenario
setting can be done in more than one way and it is to a certain ex-
tent a matter of taste. Here, as an illustration, we further develop
this first example to indicate a possible way to cast it within the
setup of Section III. It is tacitly understood that similar formal-
izations apply to all other examples.
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First, set an optimization problem with the format of a robust
convex program as follows:

Then, assume a probability measure over the uncertainties
is given, and build the scenario counterpart of the problem

subject to

where the scenarios are independently extracted at
random according to . Here, the optimization variable is

. Note also that the lower bound has been intro-
duced without loss of generality since, otherwise, the solution
may escape to infinity due to homogeneity of the constraint.

Applying Theorem 1 we can then conclude that, with proba-
bility at least , either is unfeasible, so that RCP and
the original GQS is unfeasible, or the solution of
is a -level solution for RCP. In the latter case, if , it is
easily seen that GQS is again unfeasible. Finally, if , then

is a -level solution for GQS. Applicability of Theorem
1 subsumes that Assumption 2 holds, while in general situations
one can resort to Theorem 4 in Appendix A.

B. State-Feedback Stabilization

Consider the uncertain system

(17)

where is the state variable, is the control
input, and matrices and are generic functions of .

Suppose we want to stabilize (17) by means of a state-feed-
back control law , where is a static feed-
back gain. The resulting closed-loop system is robustly stable if
and only if is Hurwitz for all .

Using the enhanced LMI characterization proposed in [2]
(Theorem 3.1), robust stabilizability of (17) is equivalent to the
existence of matrices , , and a Lya-
punov symmetric matrix function such that

(18)

(asterisks denote entries that are easily inferred from symmetry).
If a feasible solution is found, the robustly stabilizing feedback
gain is recovered as . A sufficient condition for
robust stabilizability is hence readily obtained by considering a
specific parameterized matrix function family (linear in
the parameter , for any fixed ) in the above condition.
The resulting problem is convex in the decision variable

, for any fixed , and it is therefore a robust convex

problem. Notice again that this robust problem is hard to solve in
general. As an exception, in the special case when
is affine in , is a hypercube, and is chosen in the affine
form (16), the previous robust condition can be transformed by
a standard “vertexization” argument into a finite set of LMIs
involving the vertex matrices, and hence solved exactly (this
latter special case is indeed the one presented in [2]). We remark
however again that the number of vertices (and, hence, of LMI
constraints) grows exponentially with the number of uncertain
parameters , which makes this standard approach practically
unviable in cases when is large.

This robust state-feedback stabilization problem is amenable
to the scenario randomization approach similarly to the
problem in Section V-A. A numerical example is presented in
Section V-D.

C. Other Problems

In the previous sections, only a few control problems
amenable to the scenario reformulation have been illustrated.
This is just a sample of possible problems and many more
can be considered, such as robust or state feedback
synthesis (see e.g., [2]), linear parameter-varying (LPV) design
(see, e.g., [5] for a formulation of the LPV synthesis problem in
the form of a robust convex semidefinite program, and [24] for
a randomized solution approach, alternative to the one proposed
in this paper), LP-based robust pole assignment (see [32]), the
various robust design problems based on parameter-dependent
linear matrix inequalities presented in [1], as well as problems
in the robust model predictive control setup. For discrete-time
systems, the robust analysis and design criteria proposed in
[21] and [22] are also directly suitable for the scenario tech-
nique. Also, problems of set-membership state reachability and
filtering [14], [18] may be efficiently solved in a probabilistic
sense by the proposed methodology.

In the next section, we present a numerical example of the
scenario design approach.

D. A Numerical Example

Consider a robust state-feedback stabilization problem of the
form presented in Section V-B. In particular, let the uncertain
system be given by

where

and is as given at the bottom of the next page, with
, , and

The objective is to determine a state-feedback control law
, such that the resulting closed-loop system is robustly

stable.
Using quadratic stability as a sufficient condition for robust

stability, from (18) we have that such controller exists if there
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exist , , and a Lyapunov matrix such
that (18) is satisfied. If a feasible solution is found, the feedback
gain is recovered as .

Assuming uniform distribution over , and proceeding as
discussed in Section V-A.II, we write the scenario version of
the problem as

where are independent samples uniformly extracted from
.
The design variable in this problem is ,

which contains free variables. Hence,
fixing a-priori probabilistic levels and , and
using bound (2), we determine the sample size .

The numerical solution of one instance of the above sce-
nario problem yielded optimal objective , corre-
sponding to the controller

Next, we run an a-posteriori Monte-Carlo analysis of robust sta-
bility. We can use a much larger sample size for this a-poste-
riori analysis, since no numerical optimization is involved in
the process. This a-posteriori test is conducted by testing di-
rectly whether is Hurwitz for a very large number
(6 ) of sampled ’s. Interestingly, for the computed con-
troller , the a-posteriori estimated probability of instability
of resulted to be equal to zero, which, using Ho-
effding’s inequality [30], means for instance that we can claim
with confidence greater than 99.999% that our controller may
fail at most on a set of ’s having volume 0.001.

VI. CONCLUSION

This paper presented a novel approach to robust control
design based on the concept of uncertainty scenarios. Within
this framework, if the robustness requirements are imposed in
a probabilistic sense, then a wide class of control analysis and
synthesis problems are amenable to efficient numerical solu-
tion. This solution is computed solving a convex optimization
problem having a finite number of sampled constraints. The
main contribution of the paper is to provide an explicit and
efficient bound on the number of scenarios required to obtain
a design that guarantees an a-priori specified probabilistic
robustness level.

This methodology is illustrated by control design examples
that present difficulties when tackled by means of standard
worst-case techniques. We believe that, due to its intrinsic
simplicity, the scenario approach will be an appealing solution
technique for many practical engineering design problems, also
beyond the control applications mentioned in this paper.

APPENDIX A
RELEASING THE UNIQUENESS ASSUMPTION

In Section III, the theory has been developed under Assump-
tion 2 requiring that is either unfeasible or, if feasible,
it admits a unique optimal solution. Here, we drop Assumption
2 and consider the general case allowing for nonuniqueness of
the solution or nonexistence of the solution even when
is feasible (i.e., the solution escapes to infinity).

A. Nonuniqueness of the Solution

We follow the same approach as in [17, Sec. 4.1]. Suppose
that when problem admits more than one optimal solu-
tion we break the tie by a tie-break rule as follows:

Tie-Break Rule: Let , , be given convex and
continuous functions. Among the optimal solutions for ,
select the one that minimizes . If indetermination still oc-
curs, select among the that minimize the solution that
minimizes , and so on with We assume that
functions , , are selected so that the tie is
broken within steps at most. As a simple example of a tie-break
rule, one can consider ,

From now on, by “optimal solution,” we mean either the
unique optimal solution, or the solution selected according to
the Tie-break rule, if multiple optimal solutions occur.

Theorem 1 holds unchanged if we drop the uniqueness re-
quirement in Assumption 2, provided that “optimal solution” is
intended in the indicated sense.

To see this, generalize Definition 4 of support constraints to:
The th constraint is a support constraint for if problem

has an optimal solution such that . Indeed
this definition generalizes Definition 4 since, in case of a single
optimal solution (single without applying the Tie-break rule),

is equivalent to . In [17, Sec. 4.1], it is
proven that Theorem 3 holds true with this extended definition
of support constraint (i.e., the number of support constraints is
at most ), and then an inspection of the proof of Theorem 1
in Section IV reveals that this proof goes through unaltered in
the present setting, so concluding that Theorem 1 still holds.

B. Nonexistence of the Solution

Even when is feasible, it may happen that no optimal
solution exists since the set for allowed by the extracted con-
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straints is unbounded in such a way that the optimal solution
escapes to infinity. In this section, we further generalize The-
orem 1 so as to cope with this situation too and then provide a
reformulation of Theorem 1 (Theorem 4) that covers all possible
situations.

Suppose that a random extraction of a multisample
is rejected when the problem is feasible

but no optimal solution exists, and another extraction is per-
formed in this case. Then, the result of Theorem 1 holds if
attention is restricted to the accepted multisamples. This idea is
now formalized.

Let be the set where is feasible but an
optimal solution does not exist (it escapes to infinity) and as-
sume that its complement has positive probability:

. Moreover, let be the probability
restricted to : . In ad-
dition, assume that if a problem with, say, constraints is fea-
sible and admits optimal solution, then, after adding an extra

th constraint, if the problem remains feasible, then an
optimal solution continues to exists (this rules out the possibility
of pathological situations where adding a constraint forces the
solution to drift away to infinity).

Going trough the proof of Theorem 1, we can readily see
that it remains valid if attention is restricted to . Precisely, the
following theorem holds.

Theorem 4: Fix two real numbers (level param-
eter) and (confidence parameter). If

then, with probability no smaller than , either the
scenario problem is unfeasible, and hence also the initial
robust convex program is unfeasible; or, is feasible, and
then its optimal solution (unique after the tie-break rule has
been applied) is -level robustly feasible.

The proof of this theorem is obtained by following the same
steps as in the proof of Theorem 1 in Section IV with a few
simple amendments, as sketched in the following.

Similarly to the proof of Theorem 1, forget for the time being
that can be unfeasible and assume . In the
present context, interpret all subset of (e.g., , , ) as
subsets of , so e.g., .
Everything in the proof goes through unaltered till (10). In (10),
drop the last step and consider the inequality

base of (19)

Now, the cylinder does not intersect since any
multisample in the cylinder is formed by the first samples
that generate the optimal solution , plus the remaining

samples that, in conjunction with the first , either
make the problem unfeasible, or, if feasible, add constraints so
still preventing escape to infinity. So

base of

which, used in (19) gives

and, after substitution in (11), we obtain

or, equivalently

Since the left-hand side is , the desired result remains
proven. The case when is a strict subset of can be dealt
with without any additional complication.

APPENDIX B
PROOF OF THEOREM 2

The first claim is immediate, since from Theorem 1, with
probability at least , if is feasible, then its op-
timal solution satisfies , i.e., it is a feasible, albeit
possibly not optimal, solution for problem , and hence

.
To prove the second claim, notice that if is feasible for

problem with , i.e.,

then for each of independent extractions of
it holds that

for and, hence, by independence, the joint event
holds

with probability at least . This means that, with probability
at least , a feasible point for is also a feasible
point for . We now have two possibilities, depending on
whether attains an optimal solution (i.e., a feasible
for exists such that ) or not. In the
first situation ( exists), taking in the previous reasoning
immediately implies that , as desired.

In the second situation ( does not exist), consider a point
which is feasible for and such that

, for some (such a exists since over
’s that are feasible for ). By the previous reasoning,
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this implies that, with probability at least , the point is
also feasible for problem , entailing

(20)

For the purpose of contradiction, suppose now that result 2 in the
theorem is violated so that with probability
larger than . Since

then

and we conclude that there exists a such that
with probability larger than . However, this

contradicts (20) for , so concluding the proof.
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